Outils Calculatoires

Feuille d'exercices 4

Institut Villebon-Charpak

Année 2017 - 2018

Dans toute la suite, K désigne \mathbb{R} ou \mathbb{C} .

1 Divsion euclidienne

1.1 Calculs

Effectuer les divisions euclidiennes suivantes (donner le quotient et le reste)

1.
$$7X^7 + 2X^6 - X^5 + 3X^4 - 2X^2 + 1$$
 par $X^2 - 3X + 2$

2.
$$X^{10} - 1$$
 par $X^2 - 1$

3.
$$X^4 - 7X^3 - 7X^2 + 55X - 41$$
 par $X^2 - 4X - 21$

4.
$$2X^6 + 7X^5 + 3X^4 - 4X^3 - 3X + 1$$
 par $2X - 1$

5.
$$X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$$
 par $X^3 + X^2 + X + 1$

1.2 (♥) Racine et divisibilité

Soit $P \in K[X]$, et $a \in K$. Soient $Q, R \in K[X]$ le quotient et reste de P dans la division euclidienne par X - a.

- 1. Montrer que R(a) = P(a). En déduire que R(X) = P(a).
- 2. Démontrer que X a divise P si et seulement si P(a) = 0.

1.3 Reste dans la division euclidienne par $X^2 + 1$

Soit $P \in \mathbb{R}[X]$ un polynôme à coefficients réels. Soient $Q, R \in \mathbb{R}[X]$ le quotient et reste de P dans la division euclidienne par $X^2 + 1$.

- 1. Montrer que R(i) = P(i).
- 2. En déduire que si on note P(i) = a + ib, alors R = bX + a.
- 3. Pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, quel est le reste de $(\sin(\theta)X + \cos(\theta))^n$ dans la division euclidienne par $X^2 + 1$?

1.4 Reste dans la division euclidienne par $(X - \lambda_1)(X - \lambda_2)$

Soit $P \in K[X]$, et $\lambda_1, \lambda_2 \in K$ avec $\lambda_1 \neq \lambda_2$. Soient $Q, R \in K[X]$ le quotient et reste de P dans la division euclidienne par $(X - \lambda_1)(X - \lambda_2)$.

- 1. Montrer que $P(\lambda_1) = R(\lambda_1)$ et $P(\lambda_2) = R(\lambda_2)$.
- 2. En déduire une expression de R en fonction de λ_1 , λ_2 , $P(\lambda_1)$ et $P(\lambda_2)$.

1.5 Racine double

Soit $P \in K[X]$, et $a \in K$. Soient $Q, R \in K[X]$ le quotient et reste de P dans la division euclidienne par $(X - a)^2$.

- 1. Montrer que R(a) = P(a).
- 2. Montrer que R'(a) = P'(a).
- 3. En déduire que

$$R = P(a) + P'(a)(X - a)$$

4. Démontrer que $(X-a)^2$ divise P si et seulement si P(a) = P'(a) = 0.

1.6 (\star) Racines multiples

Soit $P \in K[X]$ un polynôme, et $a \in K$ un nombre.

- 1. Soit $n \in \mathbb{N}$. En utilisant la formule de Taylor (voir exercice 5.1), exprimer le reste de P dans la division euclidienne par $(X a)^n$.
- 2. En déduire que a est une racine de P d'ordre au moins n si et seulement si $P^{(k)}(a) = 0$ pour tout k < n.
- 3. En déduire que a est une racine de P d'ordre au plus n si et seulement si $P^{(n+1)}(a) \neq 0$.

4. En déduire que a est une racine de P d'ordre n si et seulement si $P^{(k)}(a) = 0$ pour tout $k \leq n$ et $P^{(n+1)}(a) \neq 0$.

1.7 (\star) Division euclidienne et opérations

Soient $A_1, A_2, B \in K[X]$ avec $B \neq 0$. On écrit la division euclidienne de A_1 et A_2 par B

$$A_1 = BQ_1 + R_1$$
 $A_2 = BQ_2 + R_2$

avec $Q_1, Q_2, R_1, R_2 \in K[X], \deg(R_1) < \deg(B)$ et $\deg(R_2) < \deg(B)$.

- 1. Montrer que $Q_1 + Q_2$ et $R_1 + R_2$ sont le quotient et le reste de $A_1 + A_2$ dans la division euclidienne par B.
- 2. Montrer que $Q_1Q_2B+Q_1+Q_2$ et R_1R_2 sont le quotient et le reste de A_1A_2 dans la division euclidienne par B.
- 3. Pour $P \in K[X]$, montrer que $Q_1(P)$ et $R_1(P)$ sont le quotient et le reste de $A_1(P)$ dans la division euclidienne par B(P)
- 4. Calculer le quotient et le reste de $5X^{21} + 9X^{18} 7X^{12} 8X^6 2X^3 + 3$ dans la divsion euclidienne par $X^3 1$

2 Factorisation, racines

2.1 Factorisation

Factoriser dans \mathbb{R} les polynômes suivants

1.
$$P_1 = 2X^2 + 6X - 8$$

2.
$$P_2 = 3X^3 + 3X^2 - 30X + 24$$

3.
$$P_3 = 2X^{10} - 4X^9 + 2X^8$$

4.
$$P_4 = X^5 - 4X^4 + X^3 + 4X^2 - 2X$$

5.
$$P_5 = X^3 - 19X + 30$$

$2.2 \quad (\star)$ Racines rationnelles d'un polynôme

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots a_1 X + a_0 \in \mathbb{Z}[X]$ un polynôme à coefficients entiers avec $a_n \neq 0$ et $a_0 \neq 0$. On suppose que $r \in \mathbb{Q}$ est une racine rationnelle de P. On écrit $r = \frac{p}{q}$ avec $p, q \in \mathbb{Z}$ premiers entre eux.

- 1. Montrer que p divise a_0 et que q divise a_n .
- 2. (a) En déduire que si $a_n = 1$, alors les seules racines rationnelles de P sont entières.
 - (b) Montrer que le polynôme X^2-2 n'admet aucune racine rationnelle. En déduire que le nombre $\sqrt{2}$ est irrationnel.
- 3. Factoriser les polynômes $3X^3 2X^2 8X + 5$ et $2X^4 X^3 13X^2 + 5X$.

2.3 Factorisation (2)

Factoriser dans \mathbb{C} les polynômes suivants

1.
$$P_1 = X^2 + (1+2i)X + (1+7i)$$

2.
$$P_2 = X^3 - X^2 + X + 3$$

3.
$$P_3 = X^3 - 1$$

4.
$$P_4 = X^4 - 1$$

5.
$$P_5 = X^3 - 2$$

Indication : Quelle est la solution réelle de l'équation $x^3 = 2$?

2.4 (\star) Racines $n^{\text{ièmes}}$ de l'unité

Pour $n \in \mathbb{N}^*$, on définit le polynôme $P_n = X^n - 1$, et on pose $\omega_n = e^{\frac{2i\pi}{n}}$.

- 1. Pour $k \in \mathbb{Z}$, vérifier que ω_n^k est une racine de P_n .
- 2. Pour $i, j \in \mathbb{Z}$, montrer que $\omega_n^i = \omega_n^j$ si et seulement si n divise i j.
- 3. En déduire que

$$X^{n} - 1 = \prod_{i=0}^{n-1} (X - \omega_{n}^{k})$$

4. Montrer que pour $a \in K$

$$X^n - a^n = \prod_{i=0}^{n-1} (X - a \,\omega_n^k)$$

Factoriser dans \mathbb{C} le polynôme X^3-8 , X^4-2 et X^6-1-i (on exprimera les racines sous forme géométrique).

Indication : Pour le dernier polynôme, on pour exprimer le complexe 1+i sous forme géométrique.

5. Montrer que

$$1 + X + \dots X^{n-1} = \sum_{k=0}^{n} X^{k} = \prod_{i=1}^{n-1} (X - \omega_{n}^{k})$$

Indication: On pourra utiliser l'identité de l'exercice 3.1.

2.5 (*) Factorisation d'un polynôme

Soit $\theta \in \mathbb{R}$.

- 1. Factoriser dans \mathbb{C} le polynôme $X^2 2\cos(\theta)X + 1$.
- 2. Soit $n \in \mathbb{N}^*$.
 - (a) Quelles sont les solutions $z \in \mathbb{C}$ l'équation $z^n = e^{in\theta}$?
 - (b) Factoriser dans \mathbb{C} le polynôme $X^{2n} 2\cos(n\theta)X^n + 1$.

2.6 (\star) Factorisation (3)

Factoriser dans C les polynômes suivants

Indication : On pourra utiliser des changements de variables appropriés.

1.
$$P_1 = X^4 + 4X^2 - 21$$

2.
$$P_2 = X^6 - 5X^3 + 6$$

3.
$$P_3 = X^7 - X^5 + 4X^3 - 4X$$

2.7 (♡) Factorisation des trinômes

Soit $P = aX^2 + bX + c \in \mathbb{C}[X]$, avec $a \neq 0$, un polynôme complexe de degré 2. On pose $\Delta = b^2 - 4ac$. On se donne $\delta \in \mathbb{C}$, tel que $\delta^2 = \Delta$.

1. Montrer que

$$P = a \left[\left(X - \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] = a \left[\left(X - \frac{b}{2a} \right)^2 - \left(\frac{\delta}{2a} \right)^2 \right]$$

2. En déduire que

$$P = a\left(X - \frac{-b + \delta}{2a}\right)\left(X - \frac{-b - \delta}{2a}\right)$$

Retrouver la formule connue pour les solutions d'une équation quadratique.

2.8 (★) Miroir

$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in K[X]$$
 avec $a_n \neq 0$ et $a_0 \neq 0$. On note

$$\widetilde{P} = a_0 X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n$$

1. Vérifier que pour tout $x \in K^*$, on a

$$\widetilde{P}(x) = x^n P(1/x)$$

2. On écrit P sous forme factorisée

$$P = a_n \prod_{i=1}^{n} (X - \lambda_i)$$

avec $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ (non nécessairement 2 à 2 distincts). Montrer que $\lambda_i \neq 0$ pour tout $1 \leq i \leq n$, et

$$\widetilde{P} = a_n \prod_{i=1}^n (1 - \lambda_i X) = a_0 \prod_{i=1}^n \left(X - \frac{1}{\lambda_i} \right)$$

3. Factoriser le polynôme $-77X^2 + 4X + 1$.

3 Identités remarquables

3.1 (V) Progression géométrique

Soit $a \in K$ un nombre et $n \in \mathbb{N}^*$ un entier. Montrer que X-a divise X^n-a^n et que

$$X^{n} - a^{n} = (X - a) \sum_{k=0}^{n-1} a^{n-1-k} X^{k} = (X - a)(X^{n-1} + aX^{n-2} + \dots + a^{n-2}X + a^{n-1})$$

3.2 (♡) Binôme de Newton

Pour $k, n \in \mathbb{N}$ avec $k \leq n$, on note le coefficient binomial

$$\binom{n}{k} = \prod_{i=1}^{k} \frac{n-i}{i+1} = \frac{n(n-1)\dots(n-k+1)}{k!}$$

Par convention, pour k > n, on pose $\binom{n}{k} = 0$.

1. Montrer que pour tout $n, k \in \mathbb{N}$ et

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

2. Soit $a \in K$. Montrer que pour tout $n \in \mathbb{N}$, on a

$$(X+a)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} X^k$$

4 Interpolation

4.1 Un polynôme de degré $\leq n$ est déterminé par ses valeurs en n+1 points

Soit $n \in \mathbb{N}$. On note $K_n[X] = \{P \in K[X], \deg(P) \leq n\}$. Soient $x_0, x_1, \ldots, x_n \in K$ deux à deux distincts.

- 1. (a) Soit $P \in K_n[X]$. On suppose que $P(x_k) = 0$ pour tout $0 \le k \le n$. Montrer que $(X x_0)(X x_1) \dots (X x_n)$ divise P. En déduire que P = 0.
 - (b) Soient $P, Q \in K_n[X]$. On suppose que

$$P(x_k) = Q(x_k)$$

pour tout $0 \le k \le n$. Montrer que P = Q.

2. (\star) On considère l'application

$$u: K_n[X] \longrightarrow K^{n+1}$$

 $P \longmapsto (P(x_0), P(x_1), \dots, P(x_n))$

- (a) Montrer que u est linéaire.
- (b) Montrer que u est injective et donc bijective.
- (c) En déduire que pour tout $(b_0, b_1, \dots, b_n) \in K^n$ il existe un unique polynôme $P \in K_n[X]$ tel que $P(x_k) = b_k$ pour tout $0 \le k \le n$.

4.2 (*) Polynômes de Lagrange

Soit $n \in \mathbb{N}$. On note $K_n[X] = \{P \in K[X], \deg(P) \leq n\}$. Soient $x_0, x_1, \ldots, x_n \in K$ deux à deux distincts.

- 1. Pour $0 \le i \le n$, on cherche à construire un polynôme $L_i \in K_n[X]$ tel que $L_i(x_j) = \delta_{i,j}$ où $\delta_{i,j}$ vaut 1 si i = j et 0 sinon.
 - (a) Montrer qu'il existe une constante $a \in K$ telle que

$$L_i = a \prod_{0 \le j \le n, j \ne i} (X - x_j)$$

(b) Montrer que

$$a = \prod_{0 \le j \le n, j \ne i} \frac{1}{x_i - x_j}$$

(c) Vérifier que

$$L_i(X) = \prod_{0 \le j \le n, j \ne i} \frac{X - x_j}{x_i - x_j}$$

est bien solution de notre problème.

2. Retrouver le résultat de l'exercice 4.1 : pour tout $(b_0, b_1, \dots, b_n) \in K^n$ il existe un unique polynôme $P \in K_n[X]$ tel que pour tout $0 \le k \le n$

$$P(x_k) = b_k$$

et on a même que P est donné par

$$P(X) = \sum_{k=0}^{k} b_k L_k(X)$$

4.3 (**) Matrice et déterminant de Vandermonde

Pour $(x_0, x_1, \ldots, x_n) \in K^{n+1}$, on définit la matrice de Vandermonde $V(x_0, x_1, \ldots, x_n) \in \mathcal{M}_{n+1}(K)$ par

$$M(x_0, x_1, \dots, x_n) = \left(x_i^j\right)_{0 \le i, j \le n} = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$$

1. Si $P = \sum_{k=0}^{n} a_k X^k$, alors

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} P(x_0) \\ P(x_1) \\ \vdots \\ \vdots \\ P(x_n) \end{pmatrix}$$

- 2. Montrer que la matrice $M(x_0, x_1, ... x_n)$ est inversible si et seulement si les x_i sont deux à deux distincts (on pourra utiliser les résultats de l'exercice 4.1).
- 3. $(\star\star)$ On pose $V(x_0, x_1, \ldots, x_n) = \det(M(x_0, x_1, \ldots, x_n))$ le déterminant des matrices de Vandermonde. On souhaite calculer $V(x_0, x_1, \ldots, x_n)$ pour tout $n \in \mathbb{N}^*$ et $(x_0, x_1, \ldots, x_n) \in K^{n+1}$. Pour cela on considère le polynôme

$$P(X) = V(x_0, x_1, \dots x_n, X) \in K[X]$$

- (a) Justifier que deg(P) = n + 1. Que vaut le coefficient dominant de P?

 Indication: On pourra développer le déterminant par rapport à la dernière ligne.
- (b) Montrer que $(X x_0)(X x_1) \dots (X x_n)$ divise P. En déduire que

$$P(X) = V(x_0, x_1, \dots, x_n).(X - x_0)(X - x_1)...(X - x_n)$$

(c) Montrer par récurrence sur $n \in \mathbb{N}$, que

$$V(x_0, x_1, \dots, x_n) = \prod_{0 \le i < j \le n} (x_i - x_j)$$

5 Problèmes

5.1 (♡) Développement de Taylor

Soit $a \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on pose $T_n = \frac{(X-a)^n}{n!}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $T'_{n+1} = T_n$
- 2. Montrer que pour tout $n \in \mathbb{N}$, on a

$$\int_{a}^{x} T_n(t) dt = T_{n+1}(x)$$

3. Montrer par récurrence sur $\deg P = n$ que

$$P(X) = \sum_{k=0}^{n} P^{(k)}(a) \ T_k = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

Indication: On pourra appliquer la formule de Taylor pour P', et utiliser la formule

$$P(x) - P(a) = \int_{a}^{x} P'(t) dt$$

5.2 Polynômes de Tchebychev

On définit la famille des polynômes $(T_n)_{n\geq 0}\in K[X]^{\mathbb{N}}$ de Tchebychev par récurrence par $T_0=1,\,T_1=X$ et pour $n\in N,$

$$T_{n+2} = 2XT_{n+1} - T_n$$

- 1. Calculer T_0, T_1, T_2, T_3, T_4 .
- 2. Montrer que pour tout $n \in \mathbb{N}$, $\deg(T_n) = n$, le coefficient dominant de T_n est 2^n et que $T_n(-X) = (-1)^n T_n(X)$.
- 3. Montrer que pour tout $\theta \in \mathbb{R}$, on a $T_n(\cos(\theta)) = \cos(n\theta)$.
- 4. Montrer que les racines de T_n sont les $x_k = \cos\left(\frac{2k+1}{2n}\pi\right)$ pour $0 \le k < n$.

5.3 (*) Développement de Mahler

Soit $h \in K$, on définit $\delta : K[X] \to K[X]$ par $\delta(P) = P(X+1) - P(X)$, appelé opérateur de différence finie de pas 1. Par abus de notation, on omet souvent les parenthèse pour écrire δP ou $\delta^k(P)$ à la place $\delta(P)$ et $\delta^k(P)$

Pour $k \in \mathbb{N}$, on pose

$$B_k(X) = {X \choose k} = \frac{X(X-1)...(X-k+1)}{k!} \in K[X]$$

avec la convention $B_0 = 1$

- 1. Quels sont les polynômes $P \in K[X]$, tels que $\delta P = 0$?
- 2. Montrer que pour tout $P \neq 0$, on a $deg(\delta P) < deg P$.
- 3. Montrer que $\Delta(B_{n+1}) = B_n$.
- 4. (\star) Soit $a \in K$. Montrer par récurrence sur $n = \deg(P)$, que

$$P = \sum_{k=0}^{n} [\delta^{k} P](0).B_{k}(X) = \sum_{k=0}^{n} \frac{[\delta^{k} P](0)}{k!}.X(X-1)...(X-k+1)$$

Indication: On pourra commencer par appliquer la formule pour $\Delta(P)$.

- 5. $(\star\star)$ On fixe $P \in K[X]$ et on s'intéresse à l'équation $\delta Q = P$ d'inconnue $Q \in K[X]$.
 - (a) Montrer que l'application $\delta: K[X] \to K[X]$ est linéaire et surjective.

 Indication: Pour la surjectivité, on pourra utiliser le développement de la question précédente.
 - (b) Montrer que si $\delta Q = P$, alors pour $n \geq 0$, on a

$$\sum_{k=0}^{n} P(k) = Q(n+1) - Q(0)$$

(c) Trouver Q tel que $\delta Q = X$, en déduire que pour $n \geq 0$, on a

$$\sum_{k=0}^{n} k = \binom{n+1}{2} = \frac{n(n+1)}{2}$$

(d) Trouver Q tel que $\delta Q = X^2$ en déduire que pour $n \ge 0$, on a

$$\sum_{k=0}^{n} k^2 = \binom{n}{2} + 2\binom{n}{3} = \frac{n(n+1)(2n+3)}{6}$$

(e) Soit $k \in \mathbb{N}$. Trouver Q tel que $\delta Q = {X \choose k} = B_k(X)$, en déduire que en déduire que pour $n \ge 0$, on a

$$\sum_{i=0}^{n} \binom{i}{k} = \sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

Pouvez-vous donner une interprétation combinatoire de ce résultat?

Indication: Pour choisir k+1 éléments parmi n+1, on peut commencer par choisir le minimum.

Remarque 5.1. L'opérateur δ peut-être vu comme analogue "discret" de la dérivation. Le développement obtenu dans la question 4, appelé développement de Mahler, peut être vu comme un analogue pour δ du développement de Taylor (qui exprime un polynôme en fonction des valeurs de ses dérivés successives en un point).