Outils Calculatoires

Correction de la feuille d'exercices 2

Institut Villebon-Charpak

Année 2017 - 2018

Exercice 1 (*) Forme géométrique

$$u = \sqrt{2}e^{\frac{i\pi}{4}}$$
 $v = 2\sqrt{3}e^{\frac{i\pi}{3}}$ $w = 3e^{i(5-\pi)}$ $z = \frac{\sqrt{2}}{2}e^{\frac{23i\pi}{20}}$

Remarque 0.1. On a $w=3e^{i(5-\pi)}=3e^{i(5+\pi)}$. On a choisit $5-\pi$ comme argument pour être dans l'intervalle $[0,2\pi]$.

Exercice 2 (**) Somme d'exponentielles

On a

$$e^{i\theta_1} + e^{i\theta_2} = e^{i\frac{\theta_1 + \theta_2}{2}} \left(e^{i\frac{\theta_1 - \theta_2}{2}} + e^{-i\frac{\theta_2 - \theta_1}{2}} \right)$$
$$= 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}}$$

On distingue deux cas selon le signe du cosinus.

 $- \underline{\operatorname{Si} \cos \left(\frac{\theta_1 - \theta_2}{2}\right) \ge 0}, \text{ alors}$

$$e^{i\theta_1} + e^{i\theta_2} = \underbrace{\left[2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]}_{>0} e^{i\frac{\theta_1 + \theta_2}{2}}$$

On conclut donc que

$$\left| e^{i\theta_1} + e^{i\theta_2} \right| = 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)$$

 et

$$\arg\left(e^{i\theta_1} + e^{i\theta_2}\right) = \frac{\theta_1 + \theta_2}{2}$$

— Si $\cos\left(\frac{\theta_1-\theta_2}{2}\right) \ge 0$, alors

$$e^{i\theta_1} + e^{i\theta_2} = -\left[-2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]e^{i\frac{\theta_1 + \theta_2}{2}} = \underbrace{\left[-2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)\right]}_{\geq 0}e^{i\left(\frac{\theta_1 + \theta_2}{2} + \pi\right)}$$

On conclut donc que

$$\left| e^{i\theta_1} + e^{i\theta_2} \right| = -2\cos\left(\frac{\theta_1 - \theta_2}{2}\right)$$

 et

$$\arg\left(e^{i\theta_1} + e^{i\theta_2}\right) = \frac{\theta_1 + \theta_2}{2} + \pi$$

Exercice 3 (♡) Quelques formules de trigonométrie

Soit $\theta \in \mathbb{R}$ un réel et $z = e^{i\theta}$.

1. On a

$$\overline{z} = \overline{e^{i\theta}} = e^{-i\theta} = \cos(-\theta) + i\sin(-\theta)$$

et

$$\overline{z} = \overline{\cos \theta + i \sin \theta} = \cos \theta - i \sin \theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$cos(-\theta) = cos(\theta)$$
 $sin(-\theta) = -sin(\theta)$

2. On a

$$-z = -e^{i\theta} = e^{i(\theta + \pi)} = \cos(\theta + \pi) + i\sin(\theta + \pi)$$

et

$$-z = -(\cos\theta + i\sin\theta) = -\cos\theta - i\sin\theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$cos(\theta + \pi) = -cos(\theta)$$
 $sin(\theta + \pi) = -sin(\theta)$

3. On a

$$iz = ie^{i\theta} = e^{i\left(\theta + \frac{\pi}{2}\right)} = \cos\left(\theta + \frac{\pi}{2}\right) + i\sin\left(\theta + \frac{\pi}{2}\right)$$

 et

$$iz = i(\cos\theta + i\sin\theta) = -\sin\theta + i\cos\theta$$

Donc en identifiant les parties réelles et imaginaires, on obtient

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$$
 $\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$

4. De même, en considérant $-\overline{z}$, on a $-\overline{z} = e^{i(\pi-\theta)} = \cos(\pi-\theta) + i\sin(\pi-\theta)$ d'une part, et $-\overline{z} = -\cos\theta + i\sin\theta$ d'autre part. On en déduit les formules

$$cos(\pi - \theta) = -cos(\theta)$$
 $sin(\pi - \theta) = sin(\theta)$

Enfin en considérant $i\overline{z}$, on a $i\overline{z} = e^{i\left(\frac{\pi}{2}\right) - \theta} = \cos\left(\frac{\pi}{2} - \theta\right) + i\sin\left(\frac{\pi}{2} - \theta\right)$ d'une part, et $i\overline{z} = \sin\theta + i\cos\theta$ d'autre part. On a déduit les formules

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta) \qquad \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$$

Exercice 4 (*) Racines carrées de nombres complexes

Caluler les racines carrées des nombres complexes suivants Les solutions sont

$$\pm (4+3i), \qquad \pm (1-4i), \qquad \pm (3-2i), \qquad \pm \frac{1+i}{\sqrt{2}}$$

A titre d'exemple de rédaction, montrons comment on fait le calcul pour la racine carrée de 7 + 24i. On cherche un complexe z = a + ib tel que $z^2 = 7 + 24i$. On

$$z^2 = (a+ib)^2 = a^2 - b^2 + 2iab$$

donc on obtient le système

$$\begin{cases} a^2 - b^2 = 7 \\ 2ab = 24 \end{cases}$$

On a donc $b=\frac{12}{a}$, et en l'injectant dans la première équation $a^2-\frac{12^2}{a^2}=7$ donc $0=a^4-7a^2-12^2$. Posons $x=a^2$ et résolvons l'équation en x obtenue : $x^2-7x-12^2=0$. On calcule son discriminant $\Delta=7^2+24^2=625=25^2$. Donc $x=\frac{7\pm25}{2}$, c'est-à-dire x=-9 ou x=16. Mais comme $x=a^2\geq 0$, on peut exclure la solution -9, et il reste $x=a^2=16$. Donc $a=\pm 4$. Si a=4, on trouve b=3, et donc la racine 4+3i. Si a=-4, on trouve b=-3, et donc la racine -4-3i. On peut aisément vérifier que ces solutions sont bien des racines.

Exercice 5 (\star) Equations quadratiques dans $\mathbb C$

1. Le discriminant de l'équation $z^2+z+1=0$, vaut $\Delta=1-4=-3$, donc les solutions sont $z=\frac{-1\pm i\sqrt{3}}{2}$.

- 2. L'équation $z^2 = 7 + 24i$ a été résolue dans l'exercice précédente les solutions sont $z = \pm (4 + 3i)$.
- 3. Le discriminant de l'équation $z^2 (5+6i)z + 1 13i = 0$ est

$$\Delta = (5+6i)^2 - 4(1-13i) = (5^2 - 6^6 - 4) + i(2 \times 5 \times 6 + 4 \times 13) = -15 + 112i$$

Si $(a+ib)^2 = -15 + 112i$, on a alors

$$\begin{cases} a^2 - b^2 &= -15 \\ 2ab &= 112 \end{cases} \Leftrightarrow \begin{cases} (a-b)(a+b) &= -15 \\ ab &= 7 \times 8 \end{cases}$$

On peut à nouveau se ramener à une équation quadratique comme dans les exercices précédents (le calcul un peu fastidieux donne l'équation $a^4 + 15a^2 - (56)^2$ qui mène à $a^2 = \frac{113-15}{2} = 49 = 7^2$), mais si on remarque que 15 = 7 + 8 et -1 = 7 - 8, le système se résout à vue : on vérifie que $(a,b) = \pm (7,8)$ sont solutions de ce système. Donc $\Delta = (7+8i^2)^2$, et les solutions de l'équation initiale sont $z = \frac{5+6i\pm (7+8i)}{2}$ c'est-à-dire z = -1 - i ou z = 6 + 7i.

Exercice 6 (**) Système somme-produit

1. Le discriminant du polynôme $z^2 - (1+i)z + (2-i)$ vaut $\Delta = (1+i)^2 - 4(2-i) = -8 + (2+4)i = -8 + 6i$. Calculons une racine carrée a+ib de ce discriminant, on a $-8+6=(a+ib)^2=(a^2-b^2)+2iab$, donc

$$\begin{cases} a^2 - b^2 = -8 \\ 2ab = 6 \end{cases} \Leftrightarrow \begin{cases} (a - b)(a + b) = -2 \times 4 \\ ab = 1 \times 3 \end{cases}$$

On peut résoudre ce système par la méthode calculatoire habituelle (en résolvant l'équation $a^4 - 8a^2 - 3^2 = 0$, qui donne $a^2 = \frac{-8\pm 10}{2} = 1$ ou -9, donc $a = \pm 1$), ou on peut aussi voir les solutions de ce système à vue : (a,b) = (1,3) ou (a,b) = (-1,-3). Donc $-8+6i = (1+3i)^2$ et les solution de notre équation de départ sont $z = \frac{1+i\pm(1+3i)}{2}$, c'est-à-dire z = 1+2i ou z = -i.

2. Rappelons la propriété suivante :

Lemme 0.2. Les solutions de l'équation $x^2 - ax + b = 0$ sont exactement les solutions du systême

$$\begin{cases} u + v = a \\ uv = b \end{cases}$$

Démonstration. En effet, si λ_1, λ_2 sont les solutions du trinôme, alors on peut factoriser $x^2 - ax + b = (x - \lambda_1)(x - \lambda_2) = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$ et en identifiant les coefficients, on a donc

$$\begin{cases} \lambda_1 + \lambda_2 = a \\ \lambda_1 \lambda_2 = b \end{cases}$$

Réciproquement, si u et v sont des solution du système

$$\begin{cases} u + v = a \\ uv = b \end{cases}$$

alors en multipliant la première ligne par u, on a $u^2 + uv = au$, donc $0 = u^2 - au + uv = u^2 - au + b$. Ce qui veut bien dire que u est une racine de $z^2 - az + b$. On fait de même avec v.

D'après le lemme, les solution du système $\begin{cases} u+v=1+i \\ uv=2-i \end{cases}$ sont donc le racines du polynômes $z^2-(1+i)z+(2-i)$ (dans un ordre interchangeable) c'est-à-dire (u,v)=(1+2i,-i) ou (u,v)=(-i,1+2i).

Exercice 7 (**) Valeurs spéciales de cos et sin

1. On pose z = x + iy, on a $(x + iy)^2 = (x^2 - y^2) + 2ixy$ donc

$$\begin{cases} x^2 - y^2 = \frac{1}{\sqrt{2}} \\ 2xy = \frac{1}{\sqrt{2}} \end{cases}$$

on peut accéler la résolution du système en remarquant que $|z|^2=x^2+y^2=\left|\frac{1+i}{\sqrt{2}}\right|=1$. Donc en sommant avec $x^2-y^2=\frac{1}{\sqrt{2}},$ on obtient $2x^2=1+\frac{1}{\sqrt{2}},$ et $x^2=\frac{2+\sqrt{2}}{4},$ donc

$$x = \pm \sqrt{\frac{2 + \sqrt{2}}{4}} = \pm \frac{\sqrt{2 + \sqrt{2}}}{2}$$

de même, en faisant la différence, on trouve $y^2 = \frac{2-\sqrt{2}}{4}$, et

$$y = \pm \sqrt{\frac{2 - \sqrt{2}}{4}} = \pm \frac{\sqrt{2 - \sqrt{2}}}{2}$$

Le signe est le même pour x et y (car leur produit vaut $\frac{1}{\sqrt{2}}$, qui est positif). En conclusion, il y a deux solutions

$$z = \pm \left(\frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2}\right)$$

2. Comme $\frac{1+i}{\sqrt{2}}=e^{i\frac{\pi}{4}}$, l'équation de la question se réécrit $z^2=e^{i\frac{\pi}{4}}$, et ses solutions sont manifestement $z=\pm e^{i\frac{\pi}{8}}$. Il reste à savoir à laquelle des deux racines correspond $e^{i\frac{\pi}{8}}$. Comme $0\leq\frac{\pi}{8}\leq\frac{\pi}{4}$, alors $e^{i\frac{\pi}{8}}$ a ses parties réelles et imaginaires positives, on en déduit donc

$$e^{i\frac{\pi}{8}} = \frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2}$$

et donc finalement

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$$
 $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$

3. Pour calculer $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$, il suffit de trouver une expression de la $z=e^{i\frac{\pi}{12}}$, qui est la racine carrée de $e^{i\frac{\pi}{6}}=\frac{\sqrt{3}+i}{2}$. Donc résoudre l'équation $z^2=(x+iy)^2=\frac{\sqrt{3}+i}{2}$.

On procède comme précédemment, on a $x^2+y^2=1,$ et $x^2-y^2=\frac{\sqrt{3}}{2}.$ Donc on tire

$$x = \pm \frac{\sqrt{2 + \sqrt{3}}}{2}$$
 $y = \pm \frac{\sqrt{2 - \sqrt{3}}}{2}$

Comme $0 \le \frac{\pi}{8} \le \frac{\pi}{4}$, alors $e^{i\frac{\pi}{12}}$ est la racine qui a sa partie réelle et imaginaire positives, donc

$$e^{i\frac{\pi}{12}} = \frac{\sqrt{2+\sqrt{3}}}{2} + i\frac{\sqrt{2-\sqrt{3}}}{2}$$

et au final

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}$$

Remarque 0.3. Une autre manière de calculer $e^{i\frac{\pi}{12}}$ consiste à remarquer que $\frac{1}{12} = \frac{1}{3} - \frac{1}{4}$, donc

$$e^{i\frac{\pi}{12}} = \frac{e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{4}}}$$

$$= \frac{\frac{\sqrt{3}+i}{2}}{\frac{1+i}{\sqrt{2}}}$$

$$= \frac{\sqrt{2}}{2} \frac{1+i\sqrt{3}}{1+i}$$

$$= \frac{\sqrt{2}}{2} \frac{(1+\sqrt{3}i)(1-i)}{2}$$

$$= \frac{\sqrt{2}}{4} [(\sqrt{3}+1)+i(\sqrt{3}-1)]$$

$$= \frac{\sqrt{6}+\sqrt{2}}{4}+i\frac{\sqrt{6}-\sqrt{2}}{4}$$

Donc on trouve

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Et même si ça ne saute pas aux yeux, on peut vérifier que ces expressions sont en fait bien égales à celle trouvées plus haut (elles sont positives et leurs carrés sont égaux)!

Exercice 8 $(\star \star \star)$ Tangente de la somme

- 1. Le module de $1+i\tan\theta$ est $1+\tan^2\theta$, et son argument est θ .
- 2. Comme $\theta_1, \theta_2 \in [0, \frac{\pi}{4}[$, on a $\tan 0 = 0 \le \tan \theta_1 < \tan \frac{\pi}{4} = 1$ (la fonction tangente est croissante sur $[-\pi/2, \pi/2]$). Et de même $0 \le \tan \theta_2 < 1$. Donc on a l'encadrement

$$0 < 1 - \tan \theta_1 \tan \theta_2 \le 1$$

on a en particulier l'inégalité demandée.

3. Comme $0 \le \theta_1 < \frac{\pi}{4} \le \frac{\pi}{2}$, l'argument de $(1 + i \tan \theta_1)$ est θ_1 . De même, comme $0 \le \theta_2 < \frac{\pi}{4} \le \frac{\pi}{2}$, l'argument de $(1 + i \tan \theta_2)$ est θ_2 . Donc l'argument de $(1 + i \tan \theta_1)(1 + i \tan \theta_2)$ est $\theta_1 + \theta_2 \in [0, \pi/2[$. Par ailleurs, le produit vaut

$$(1 + i \tan \theta_1)(1 + i \tan \theta_2) = (1 - \tan \theta_1 \tan \theta_2) + i(\tan \theta_1 + \tan \theta_2)$$

Comme $\tan \theta_1 + \tan \theta_2 \ge 0$, l'argument de ce complexe vaut $\arctan\left(\frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}\right)$. Cette valeur est également dans l'intervalle $[0, \pi/2[$ car l'arctangente prend des valeurs dans $] - \pi/2, \pi/2[$ et que l'argument est positif ou nul.

On peut identifier donc égaliser les deux arguments

$$\theta_1 + \theta_2 = \arctan\left(\frac{\tan\theta_1 + \tan\theta_2}{1 - \tan\theta_1 \tan\theta_2}\right)$$

en prenant la tangente (ce qui est possible car on a des valeurs dans $[0, \pi/2]$), on trouve

$$\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

Exercice 9 $(\star \star \star)$ Formule de Machin

1. On a

$$\begin{split} \frac{(5+i)^4}{239+i} &= \frac{(5^4+4\times5^3i-6\times5^2-4i5+1)(239-i)}{239^2+1} \\ &= \frac{[(5^4-6.5^2+1)+i(4\times5^3-4\times5)(]239-i)}{239^2+1} \\ &= \frac{[476+i480](239-i)}{239^2+1} \\ &= \frac{2[(239-1)+i(239+1)](239-i)}{239^2+1} \\ &= 2\times\frac{239^2-239+i239^2+7239-7239+i+239+1}{239^2+1} \\ &= 2\times\frac{(239^2+1)+i(239^2+1)}{239^2+1} \\ &= 2\times\frac{(239^2+1)+i(239^2+1)}{239^2+1} \\ &= 2(1+i) \end{split}$$

2. Un argument de (5+i) est $\arctan\left(\frac{1}{5}\right)$. De même, un argument de 239+i est $\arctan\left(239\right)$. Donc un argument de $\frac{(5+i)^4}{239+i}$ est $4\arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{239}\right)$.

Or, comme c'est $2(1+i)=2\sqrt{2}e^{i\frac{\pi}{4}}$, un argument de ce nombre est aussi $\frac{\pi}{4}$. On a déduit que

$$\frac{\pi}{4} \equiv 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) \mod 2\pi$$

c'est-à-dire qu'il existe un entier $k \in \mathbb{Z}$, tel que

$$\frac{\pi}{4} = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) + 2k\pi$$

Pour montrer que k=0, il suffit d'avoir une valeur approché de $4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$ assez grossière (on a une marge d'erreur de 2π !). Pour ce faire, on peut par exemple regarder une valeur approchée sur calculatrice, ou si l'on en a pas à disposition, on peut utiliser que pour $0 \le \theta \le \frac{\pi}{4}$, on a

$$\frac{\pi}{4}\theta \le \arctan\theta \le \theta$$

(on peut faire un dessin pour le voir aisément) et donc

$$0 \le \frac{\pi}{5} - \frac{1}{239} \le 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) \le \frac{4}{5} - \frac{\pi}{239 \times 4} \le \frac{4}{5}$$

Donc on peut conclure à l'égalité

$$\frac{\pi}{4} = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$$

Exercice 10 $(\star \star \star)$ Somme de sinusoïdes

On considère la quantité $(a-ib)e^{ix}$. On note le (a-ib) sous forme géométrique $a-ib=\rho e^{i\theta_{a,b}}$ avec $\rho>0$ et $\theta_{a,b}\in[0,2\pi[$. On a d'ailleurs $\rho=\sqrt{a^2+b^2}.$ On peut écrire alors

$$(a-ib)e^{ix} = \rho e^{i(x+\theta_{a,b})} = \rho \cos(x+\theta_{a,b}) + i\sin(x+\theta_{a,b})$$

On a par ailleurs

$$(a-ib)e^{ix} = (a-ib)(\cos x + i\sin x) = (a\cos x + b\sin x) + i(a\sin x - b\cos x)$$

Donc en identifiant les parties réelles, on trouve

$$a\cos x + b\sin x = \rho\cos(x + \theta_{a,b}) = \sqrt{a^2 + b^2}\cos(x + \theta_{a,b})$$

En bonus, si on identifie les parties imaginaires, on obtient une seconde identité (qui n'était pas demandée)

$$a\sin x - b\cos x = \rho\cos(x + \theta_{a,b}) = \sqrt{a^2 + b^2}\sin(x + \theta_{a,b})$$

Remarque 0.4. La moralité de cette exercice, est qu'une somme de signaux sinusoïdaux est encore sinusoïdal.